
CE-ACCE:
The cloud enabled advanced

science computing environment

Luca	Cinquini,	Dana	Freeborn,	Sean	Hardman	and	Cynthia	Wong	[1]	
Thanks	to:	Benjamin	Bornstein,	Dan	Crichton,	Michael	Gunson	[1]	
[1]	California	Ins4tute	of	Technology	&	NASA	Jet	Propulsion	Laboratory	

Funding provided by the Advanced Information System Technologies (AIST) Advanced Concepts program
Copyright 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

AGU	Fall	Mee4ng	
December	2017,	New	Orleans,	LA

ExArch	Mee4ng,	October	2012

Outline

•Mo4va4on	

•Technologies	

•CE-ACCE	architecture	

•Applica4ons	
‣Test	Workflow	
‣SMAP	
‣ECOSTRESS	

•Lessons	Learned	
‣The	good	
‣The	bad	

•Conclusions	

•Future	Work

ExArch	Mee4ng,	October	2012

Mo4va4on
•The	next	genera4on	of	NASA	observing	missions	will	be	collec4ng	and	archiving	volumes	of	
data	which	are	1-to-2	order	of	magnitudes	larger	than	ever	before	
‣SWOT	(Surface	Water	and	Ocean	Topography,	2020):	7	TB/day	downlinked	
‣NISAR	(NASA-ISRO	Synthe4c	Aperture	Radar,	2020):	85	TB/day	downlinked,	140	PB	archived	
over	3	years	
‣Comparison:	the	total	volume	of	all	NASA	data	in	EOSDIS	archive	is	approx.	22	PB	

•In	prepara4on,	NASA	and	JPL	have	started	to	design	and	evaluate	new	hardware	
infrastructures	and	soaware	architectures	that	are	capable	of	handling	these	unprecedented	
data	volumes		
‣Must	be	scalable,	re-usable,	resilient,	and	cost-effec4ve

NISAR ECOSTRESS SWOT

ExArch	Mee4ng,	October	2012

•Recently,	the	accessibility	of	the	Cloud,	coupled	with	new	advances	in	containeriza4on	
technologies	(e.g.	Docker)	and	orchestra4on	(e.g.	Docker	Swarm,	Kubernetes,	AWS)	has	
enabled	a	new	emerging	paradigm:	
‣Define	standard,	reusable	system	architectures	
‣Plug	in	mission	specific	configura4on:	workflows	and	PGEs	(“Product	Genera4on	
Executables”)	
‣Seamlessly	deploy	to	internal	cluster,	commercial	Cloud,	or	hybrid	system	

•This	talk	will	demonstrate	the	validity	of	this	approach	for	ACCE,	a	data	processing	
framework	that	has	been	developed	at	JPL	for	over	a	decade,	and	successfully	applied	to	
several	airborne	and	satellite	missions

Mo4va4on	(cont.)

ExArch	Mee4ng,	October	2012

ACCE

•Historically	funded	by	JPL	to	provide	a	packaged	SDS	for	cost-capped	missions	

•Objec4ves:	reduce	risk,	lower	cost,	and	provide	ubiquitous	access	to	data	

•ACCE	soaware	package	is	based	on	Apache	OODT	for	data	processing,	cataloging	and	access	

•ACCE	has	been	repeatedly	demonstrated	in	a	produc4on	environment	for	remote	sensing	
mission	(both	airborne	and	satellite),	achieving	TRL-9	recogni4on

OMGSMAPCARVE

ACCE	(“Advanced	sCience	Computing	Environment”)		
is	a	re-usable	SDS	(“Science	Data	System”)	environment	for	small	missions

ExArch	Mee4ng,	October	2012

Apache	OODT

Example	OODT	architecture	to	process	data	from	a	NASA	mission

OODT	(“Object	Oriented	Data	Technology”):	open	source	framework	for	managing	scien4fic	
data	through	its	full	lifecycle,	including	data	processing,	indexing,	archiving	and	access

DATA ARCHIVE

DATA STAGING

OODT
Crawler

OODT
Crawler

OODT
Crawler

Crawlers monitor the
staging areas for input
data of different types

Instruments produce
data that is streamed to
a ground staging area

OODT
Workflow
Manager

Crawlers contact the
Workflow Manager to request

execution of workflows to
process the data

OODT
Resource
Manager

OODT
Resource

Worker

OODT
Resource

Worker

OODT
Resource

Worker

Jobs are distributed onto
available nodes by the

Resource Manager

OODT
File

Manager

File Manager extracts
descriptive metadata

and archives data
products

OODT Product
Server

Product Server
delivers data products

to clients

PGE #2PGE #1

Output Output

PGE #3 PGE #4

Output Output

Input Input Input Input

ExArch	Mee4ng,	October	2012

The	Cloud-Enabling	of	ACCE
•In	FY17,	JPL	funded	an	internal	task	to	provide	an	approach	for	running	ACCE	on	the	Cloud:	
‣to	enable	massive	scaling	and	burs4ng	
‣to	build	on	the	open	source	legacy	of	OODT	and	proven	reliability	of	ACCE	
‣to	enable	deployment	on	mul4ple	Cloud	environments	including	private	and	commercial	
Clouds	

•To	accomplish	this	task,	the	team	designed	and	implemented	a	new	ACCE	architecture	
based	on	Docker	(“ACCE/Docker”),	where	individual	OODT	services	run	as	independent	yet	
interac4ng	soaware	containers

ExArch	Mee4ng,	October	2012

Docker	Overview
•Docker	is	the	industry	leading	containeriza4on	technology	-	“build,	ship	&	run”:	
‣applica4ons	are	built	as	soaware	images	that	include	the	applica4on	itself,	all	required	
dependencies,	and	“just	enough	OS”	to	run	them	
‣images	are	uploaded	to	common	repositories	
‣images	are	deployed	as	“black	boxes”	on	any	planorm	running	a	Docker	engine

ExArch	Mee4ng,	October	2012

ACCE/Docker	Reference	Architecture

SHARED NFS FILE SYSTEM

OODT Product Server

RabbitMQ server

OODT Workflow Manager
+ RabbitMQ consumers

ACCE/Docker ARCHITECTURE

All containers have access to shared NFS disk for input/output data products and specific
mission configuration (product types, workflows and PGEs)

sends message to
RMQ server with all

information necessary
to process the data

RabbitMQ clients PULL
messages from the queues,

one at a time. Each client
submits one workflow at a

time to workflow engine until
global limit is reached

Workflow 1 Queue

Workflow 2 Queue

OODT
Workflow
Manager

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message

Consumer
for Workflow 2

OODT Workflow Manager
+ RabbitMQ consumers

OODT
Workflow
Manager

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message
Producer

OODT File Manager
w/ Solr backend

DATA ARCHIVE FILE MANAGER CONFIGDATA STAGING WORKFLOW MANAGER CONFIG PGES

store messages in separate
queues, one queue per workflow

OODT File
Manager Solr

OODT Product
Server

OODT
Crawler

monitors staging areas
for input files and

notifies RMQ message
producer client

OODT WM is responsible for
executing workflows, each

composed of 1 or more
tasks, writing products to

shared disk

Optionally, a workflow can submit
another message to RMQ server

when it completes, to trigger
execution of another workflow

OODT FM archives data
products and relevant

metadata
OODT PS enables

data download

OODT
Service

non-OODT
Service

Docker
container

CE-ACCE	architecture	advantages:	easy	to	deploy,	portable,	pluggable,	scalable

ExArch	Mee4ng,	October	2012

The	Cloud-Enabling	of	ACCE

•Each	OODT	service	is	encapsulated	as	a	Docker	container	

•OODT	services	(FM,	WM)	are	setup	to	read	mission	specific	configura4on	(workflows,	PGEs,	
data	types)	from	pre-defined	loca4on	

•Input/output	data	mounted	on	a	shared	disk	par44on	

•New	RabbitMQ	message	broker	enables	a	more	decoupled	and	scalable	processing	
environment	

•Docker	containers	can	interact	because	of	networking	provided	by	the	orchestra4on	engine

SHARED NFS FILE SYSTEM

OODT Product Server

RabbitMQ server

OODT Workflow Manager
+ RabbitMQ consumers

ACCE/Docker ARCHITECTURE

All containers have access to shared NFS disk for input/output data products and specific
mission configuration (product types, workflows and PGEs)

sends message to
RMQ server with all

information necessary
to process the data

RabbitMQ clients PULL
messages from the queues,

one at a time. Each client
submits one workflow at a

time to workflow engine until
global limit is reached

Workflow 1 Queue

Workflow 2 Queue

OODT
Workflow
Manager

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message

Consumer
for Workflow 2

OODT Workflow Manager
+ RabbitMQ consumers

OODT
Workflow
Manager

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message

Consumer
for Workflow 1

RabbitMQ
Message
Producer

OODT File Manager
w/ Solr backend

DATA ARCHIVE FILE MANAGER CONFIGDATA STAGING WORKFLOW MANAGER CONFIG PGES

store messages in separate
queues, one queue per workflow

OODT File
Manager Solr

OODT Product
Server

OODT
Crawler

monitors staging areas
for input files and

notifies RMQ message
producer client

OODT WM is responsible for
executing workflows, each

composed of 1 or more
tasks, writing products to

shared disk

Optionally, a workflow can submit
another message to RMQ server

when it completes, to trigger
execution of another workflow

OODT FM archives data
products and relevant

metadata
OODT PS enables

data download

OODT
Service

non-OODT
Service

Docker
container

ExArch	Mee4ng,	October	2012

Advantages	of	ACCE/Docker	Architecture

•Easy	to	deploy:	just	download	images	and	start	containers,	no	compilation	needed	

•Portable:	can	run	on	any	platform	where	Docker	is	installed	(developer’s	laptop,	internal	JPL	
cluster,	private	and	commercial	Clouds)	

•Pluggable:	missions	re-use	the	same	services,	provide	their	own	workflow	configuration	and	
executables	

•Scalable:	number	of	Docker	containers	can	be	scaled	using	standard	orchestration	tools	such	
as	Docker	Swarm,	Kubernetes,	AWS	EC2	Container	Services,	etc…

ExArch	Mee4ng,	October	2012

ACCE	Deployment	on	Amazon	Cloud
•We	deployed	the	ACCE/Docker	architecture	on	the	Amazon	Cloud	and	applied	to	both	
current	and	future	data	processing	use	cases	

•We	experimented	with	2	orchestra4on	engines:	Docker	Swarm	and	Amazon	ECS

Docker	Swarm	
• Intrinsic	Docker	orchestration	engine	
•Available	wherever	Docker	is	deployed	
•Provides	easy	scaling,	load	balancing,	automatic	
failover	recovery,	high	availability	through	
routing	mesh,	…	

• ..but	no	auto-scaling

Amazon	ECS	(“EC2	Container	Service”)	
•AWS	environment	for	running	Docker	apps	
•Clusters	of	EC2	instances	with	Docker	installed	
•ECS	Services	run	N	instances	of	ECS	Tasks	
•ECS	Tasks	include	1+	Docker	containers	
• Integrates	w/	AWS	S3,	Lambda,	Auto-Scaling,	CloudWatch,	ELBs,	…	
•…but	tied	to	AWS	specific	framework	and	APIs

Docker Swarm Worker

OODT File Manager
OODT File Manager

Docker Swarm Worker

RabbitMQ server container

RabbitMQ server

OODT File Manager

OODT File Manager

Solr

Docker Swarm Worker

OODT Workflow Manager

OODT Workflow Manager

RabbitMQ Consumer

Docker Swarm Worker

OODT Workflow Manager

OODT Workflow Manager

RabbitMQ Consumer

Docker Swarm
Manager

Swarm Manager manages
services by deploying

Containers onto Worker
Nodes, with optional

deployment constraints

Each Swarm Node can
run 1+ containers

EC2 Instance

ECS Task 1

EC2 Instance

ECS Task
ECS Task

ECS Task 2

RabbitMQ server container

RabbitMQ server

OODT File Manager

OODT File Manager

Solr

ECS Service 1

ECS Services manage
deployment of ECS Tasks
onto EC2 instances, with

optional deployment
constraints

ECS Service 3

ECS Service 2

Ec2 Instance

ECS Task 3

OODT Workflow Manager

OODT Workflow Manager

RabbitMQ Consumer

Each EC2 Instance can
host 1+ ECS Tasks.

Each ECS Task can contain
1+ Docker containers

Ec2 Instance

ECS Task 3

OODT Workflow Manager
OODT Workflow Manager

RabbitMQ Consumer

ECS Cluster

ExArch	Mee4ng,	October	2012

Applica4on	to	ECOSTRESS	L3/L4	Data	Processing

•As	a	first	example,	we	applied	the	ACCE/Docker	architecture	to	
simulate	and	benchmark	the	expected	L3/L4	data	processing	
pipeline	for	the	ECOSTRESS	mission	

•ECOSTRESS	(“ECOsystem	Spaceborne	Thermal	Radiometer	
Experiment	on	Space	Sta4on”):	upcoming	NASA	mission	that	will	fly	
a	thermal	radiometer	aboard	the	ISS	to	study	changes	in	vegeta4on	
due	to	climate	change	and	water	availability

•Expected	L3/L4	processing:	each	image	or	scene	needs	to	be	processed	by	a	sequence	of	3	
PGEs	running	on	2	separate	nodes	(“head	node”	and	“compute”	node)	

•We	setup	a	sequence	of	3	OODT	workflows	each	running	a	single	PGE,	where	simulated	
compute	4mes	for	each	PGE	were	based	on	the	most	recent	L3/L4	PGE	benchmark	tests

OODT Workflows

L3a Workflow

RabbitMQ
Message Producer
for “L3b Workflow”

Ancillary Downloader

L3b Workflow

RabbitMQ
Message Producer
for “L4 Workflow”

PreProcessor

L4 Workflow

L3/L4 PGE

each OODT workflow
executes one PGE to
process one scene

workflows are chained through
RabbitMQ messaging

ExArch	Mee4ng,	October	2012

Applica4on	to	ECOSTRESS	L3/L4	Data	Processing

•We	deployed	ACCE/Docker	on	AWS	ECS	cluster	composed	of	1	head	+	4	compute	nodes	
•We	benchmarked	the	processing	of	a	full	day	of	data	(15	ISS	orbits	=	142	scenes)	as	a	
func4on	of	the	number	of	OODT	WM	containers	instan4ated	on	each	node

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

15	 20	 25	 30	 35	 40	

To
ta
l	E
xe
cu
,o

n	
Ti
m
e	
fo
r	1

5	
O
rb
its
	in
	H
ou

rs
	

Total	#	of	WorkerContainers	

ECOSTRESS	L3/L4	SIMULATED	BENCHMARKING	ON	AWS	ECS	CLUSTER	

#	L3a=L3b=L4	

#	L3b	=	2L3a	=	2L4	

ECOSTRESS CLUSTER

ECOSTRESS COMPUTE NODE

ECOSTRESS HEAD NODE

OODT File Manager
w/ Solr backend

+ ECOSTRESS configuration

RabbitMQ server

L3a Workflow Queue

L3b Workflow Queue

L4 Workflow Queue

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3a WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3a WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3a WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

Elastic Load Balancer

ports: 5672, 15672, 8983, 9000

Distributes requests among all
registered EC2 instances

Enables inter-container discovery

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

ECOSTRESS COMPUTE NODE

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

ECOSTRESS COMPUTE NODE

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

ECOSTRESS COMPUTE NODE

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L3b WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

L4 WORKFLOW
OODT Workflow Manager

+ ECOSTRESS configuration
+ ECOSTRESS PGEs

+ RabbitMQ consumer

OODT
Workflow
Manager

RabbitMQ
Message

Consumer

Attached shared EFS storage
(archive products, job logs)Each ECS task runs

1+ Docker container

EC2 instances can be
scaled up/down
within cluster

RabbitMQ
Message
Producer

starts processing by
sending messages to
start L3a PGE for all

scenes, orbits

one queue per workflow

RabbitMQ clients PULL
messages from the queues,

one at a time. Each client
submits and monitors one

workflow at a time.

Each ECS service runs
and maintains the desired
number of Tasks over all
available EC2 instances

ECOSTRESS FILE MANAGER SERVICE
(count=1)

ECOSTRESS RABBITMQ SERVICE
(count=1)

ECOSTRESS L3a WORKER SERVICE
(count=10)

ECOSTRESS L3b WORKER SERVICE
(count=20)

ECOSTRESS L4 WORKER SERVICE
(count=10)

•Conclusions:		
‣ it	was	straighnorward	to	deploy	and	configure	ACCE/Docker	to	execute	the	ECOSTRESS	L3/
L4	data	processing	
‣ the	architecture	scaled	well	by	increasing	the	number	of	worker	containers	
‣a	full	day	of	L3/L4	data	could	be	processed	in	about	an	hour	on	a	medium	size	EC2	cluster

ExArch	Mee4ng,	October	2012

Scalability	Studies	on	AWS	ECS

•We	assessed	the	scalability	of	the	ACCE/Docker	
framework	using	Amazon	ECS:	
‣Test	workflow	composed	of	2	PGEs,	each	writing	out	
an	output	file	
‣1	EC2	Manager	Node	hosting	FM	and	RMQ	server	
containers	
‣N	EC2	Worker	Nodes	hosting	WM	containers	(where	
N	can	be	either	fixed,	or	auto-scaled)	
‣Executing	10,000	workflows	=	20,000	PGEs

ECS Task @ EC2 Instance
ECS Task @ EC2 Instance

ECS Worker ServiceECS Manager Service

ECS Task @ EC2 Instance
ECS Task @ EC2 Instance

OODT-0.3 + RabbitMQ + ECS
Test Workflow Architecture

SHARED NFS FILE SYSTEM

All File Manager and Workflow
Manager containers have

access to shared NFS disk

starts processing by
sending messages to
the RabbitMQ server

RabbitMQ clients PULL messages
from the queue, one at a time. Each

client submits a max of N
workflows at a time, then waits to

submit the next

OODT Workflow Manager
(9001)

+ RabbitMQ consumer

OODT
Workflow
Manager

(9001)

RabbitMQ
Message

Consumer
for “test-workflow”

RabbitMQ
Message
Producer

OODT File Manager
(9000)

OODT_ARCHIVEOODT_CONFIG OODT_JOBS

OODT File
Manager

(9000)

one queue per workflow
OODT

Crawler

OODT Crawler sends archive
request to OODT File Manager

Load balancing is intrinsically
provided by RabbitMQ clients

pulling messages only when the
Workflow Manager is available to

execute another job.

AWS ELB
:5672

:15762
:9000

AWS ELB
:9001

RabbitMQ server
(6572, 15672)

“test-workflow” Queue < Pull >< Push >

ELB enable inter-container
communication (load balancing
feature is not really used here)

Each ELB can automatically
register EC2 instances based on a

health check on a single port

Test Workflow

PGE #2PGE #1

Output Output

0	

2000	

4000	

6000	

8000	

10000	

12000	

0	 2000	 4000	 6000	 8000	 10000	 12000	

N
um

be
r	o

f	R
ea
dy
	M

es
sa
ge
s	

Time	(secs)	

OODT	0.3	+	RabbitMQ	+	ECS	
1	Manager	node	+	N	Worker	nodes,	1	Workflow	Manager	per	node,	4	max	concurrent	workflows	

 N=10 Worker Nodes (fixed)
 1<=N<=15 Nodes (AS)
 N=5 Worker Nodes (fixed)

•Results:	
‣All	workflows	completed	
‣ACCE/Docker	framework	can	sustain	rates	of	
several	tens	of	thousands	of	workflows/
PGEs	per	day	as	expected	from	upcoming	
NASA	missions	SWOT	and	NISAR

ExArch	Mee4ng,	October	2012

More	Scalability	Studies	on	AWS	ECS

•Pushing	the	limit:	100,000	workflows	(i.e.	200,000	PGEs)	in	about	14	hours…

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

0	 10000	 20000	 30000	 40000	 50000	 60000	

N
um

be
r	o

f	R
ea
dy
	M

es
sa
ge
s	

Time	(secs)	

OODT	0.3	+	RabbitMQ	+	ECS	
1	Manager	node	+	N	Worker	nodes,	1	Workflow	Manager	per	node,	4	max	concurrent	workflows	

 N=10 Worker Nodes (fixed)
 1<=N<=15 Nodes (AS)
 N=5 Worker Nodes (fixed)
1<=N<=10 Nodes, 100K, AS

ExArch	Mee4ng,	October	2012

Applica4on	to	SMAP	Test	Suite

•We	experimented	with	deploying	and	running	
the	SMAP	SDS	as	Docker	containers	in	different	
environments:	JPL	internal	cluster	and	Amazon	
self-provisioned	EC2s	

•SMAP	(“Soil	Moisture	Active	Passive”):	orbiting	
NASA	satellite	that	measures	the	amount	of	
water	in	the	top	5cm	of	soil	everywhere	on	the	
Earth	surface	

•The	existing	SMAP	SDS	includes	13	crawlers,	
tens	of	inter-dependent	PGEs

ExArch	Mee4ng,	October	2012

Applica4on	to	SMAP	Test	Suite
•Because	SMAP	already	has	a	legacy	working	SDS,	we	did	not	break	up	the	data	services	and	
extract	the	SMAP	specific	configuration	to	be	used	by	the	standard	ACCE/Docker	
framework:	rather,	we	created	a	Docker	image	hosting	the	complete	SMAP	SDS	

•The	same	SMAP	SDS	image	was	used	to	start	different	OODT	services	(FM+crawlers	or	WM)	
on	different	hosts,	depending	on	startup	parameters	

•Deployed	on	a	Docker	Swarm	composed	of	1	manager	node	and	2	worker	nodes

Docker Host #2Docker Host #1

SMAP SPDM Image

File Manager

SMAP specific configuration

same Docker image
running different OODT services

(built from OODT-0.3)

SMAP PGES

STAGING DIRECTORIES

Crawlers
Resource Manager

StubResource Manager
StubResource Manager

Stub

SMAP SPDM Image

Workflow Manager

ARCHIVE DIRECTORIES

Docker Host #3

SMAP SPDM Image

Workflow Manager

Public Oracle Image

Oracle DB

JPL Oracle DB @ JPL cluster

@ public AWS

•Results:	
‣We	were	able	to	successfully	execute	the	full	SMAP	SDS	
regression	suite	on	JPL	internal	cluster	and	Amazon	Cloud,	
using	1	container	per	node	
‣Test	suite	got	stuck	when	using	more	than	1	container	per	
host	
‣Task	funding	ran	out	before	the	problem	could	be	debugged…

ExArch	Mee4ng,	October	2012

Applica4on	to	ECOSTRESS	L1/L2	Data	Processing
•We	also	deployed	the	ECOSTRESS	L1/L2	data	processing	on	the	Cloud,	using	existing	actual	PGEs	

•We	proceeded	in	a	similar	manner	to	the	SMAP	use	case:		
‣One	single	Docker	image	containing	ECOSTRESS	SDS,	starting	different	OODT	services	(FM+crawlers	or	WM)	
depending	on	configuration	
‣Deployed	on	JPL	internal	cluster	
‣Used	Docker	Swarm	for	orchestration	and	networking	

•Accomplishments:successfully	executed	L0B	&	L1A	RAW	PGEs	

•Issues	found	during	execution	of	PGEs:	
‣Dependencies	on	system	libraries,	VICAR	libraries,	and	ECOSTRESS	Python	modules	for	PGEs	
‣Higher	version	of	OS	required	
‣Access	to	PGEs’	supporting	directories	such	as	Camera	model,	MERRA,	or	SPICE,	etc.	
‣Docker	images	size	>	6.6GB	

•Conclusion:	the	existing	ECOSTRESS	L1/L2	SDS	can	be	run	on	the	Cloud,	but	not	using	a	standard,	re-usable	
micro-services	architecture	without	modifications	to	the	PGE	deployment

ExArch	Mee4ng,	October	2012

Conclusions	and	Lesson	Learned
•Recent	advances	in	system	technologies	(Cloud,	Docker,	orchestration	engines)	are	enabling	a	new	
paradigm	for	designing	science	data	systems	that	are	easier	to	deploy,	reusable,	and	more	scalable	

•One	such	SDS	is	the	newly	re-architected	ACCE/Docker	framework,	which	we	have	demonstrated	
to	be	suitable	for	deploying	and	scaling	data	processing	of	small	NASA	missions	on	the	Cloud	(up	to	
100K	workflows/day)	

• Two	equally	challenging	issues	arise	when	porting	a	legacy	SDS	to	run	in	the	Cloud:	
‣ The	data	management	package	-which	was	tested	for	a	specific	hardware/network/storage	
configuration-	might	not	work	in	a	high	availability,	dynamic	environment,	and	might	need	to	be	
partially	re-architected	
‣ Existing	PGEs	may	not	be	portable,	i.e.	they	might	depend	on	a	specific	OS	version	and	system	
libraries	-	in	our	case,	this	was	the	biggest	challenge	when	adapting	the	existing	SMAP	and	
ECOSTRESS	systems	

• Consequently,	new	SDS	systems	must	be	architected	for	the	Cloud	from	the	very	beginning:	
‣ Build	portable	PGEs,	optimally	as	Docker	containers	
‣ Test	deployment	in	a	dynamic	environment,	with	a	variable	number	of	nodes	
‣ Plan	for	hardware/network	failures,	build	resiliency	into	the	system

ExArch	Mee4ng,	October	2012

Current	and	Future	Work

•Application	of	ACCE/Docker	to	AMIGHO	
‣Processing	on	the	Cloud	of	hydrological	data	collected	by	GNSS	(Global	Navigation	Satellite	System)	
enabled	stations	around	the	U.S.	

•Define	and	use	a	“template	PGE”	
‣“blue-print”	for	developing	PGEs	that	can	be	run	by	the	ACCE/Docker	framework,	with	different	
methods	invoked	at	specific	stages	of	the	workflow	lifecycle	

•Port	the	ACCE/Docker	architecture	to	Kubernetes	and	OpenShift	
‣Cloud-agnostic	orchestration	engine	to	enable	seamless	deployment	on	AWS,	GCE,	Azure,	etc.	

•Instrument	RabbitMQ	broker	to	enable	automatic	recovery	from	Cloud	failures	

•Develop	standard	UI	for	monitoring	and	book	keeping,	package	as	Docker	container

